2018, 20(6): 83-88. doi:  10.14071/j.1008-8105(2018)-1020

探索运营商数据在精准扶贫和应急救灾中的应用

1.  中国移动通信集团四川有限公司 成都 610041
2.  电子科技大学 成都 611731
3.  成都新经济发展研究院 成都 610094

收稿日期: 2018-11-05

网络出版日期: 2018-12-01

基金项目: 国家自然科学基金(61433014).

Application of Carrier Data on Precise Poverty Alleviation and Emergency Management

1.  China Mobile Group Sichuan Co., Ltd. Chengdu 610041 China
2.  University of Electronic Science and Technology of China Chengdu 611731 China
3.  Institution of New Economic Development Chengdu 610094 China

Received Date: 2018-11-05

Web Publishing Date: 2018-12-01

引用本文: 尤伟杰, 高见, 周涛. 探索运营商数据在精准扶贫和应急救灾中的应用. 电子科技大学学报社科版, 2018, 20(6): 83-88. doi: 10.14071/j.1008-8105(2018)-1020

准确感知社会经济状态和及时识别应急事件对于智慧社会治理至关重要,然而传统的政府部门数据和统计分析方法无法满足准确性和实时性的需求。近年来,运营商积累的大规模数据,以低获取成本、实时更新和高时空分辨率等优势,为解决问题提供了新思路。回顾运营商数据结合深度挖掘分析算法在精准扶贫和应急救灾中的具体应用基础上,并进一步讨论了运营商数据在定量评估扶贫和救灾效果、提高决策效率和治理能力等方面的应用前景。

关键词:   大数据 , 扶贫 , 救灾 , 社会治理 , 计算社会经济学

Key words:   big data , poverty alleviation , disaster relief , social governance , computational socioeconomics

[1]

1] CHUA A Y, KAYNAK S, FOO S S. An analysis of the delayed response to Hurricane Katrina through the lens of knowledge management[J]. Journal of the American Society for Information Science and Technology, 2007, 58(3): 391-403

[2]

2] BATTY M. When all the world’s a city[J]. Environment and Planning A, 2011, 43(4): 765-772

[3]

United Nations. Millennium Development Goals [EB/OL]. (2008-05-20). http://www.un.org/millenniumgoals.

[4]

4] 高见, 周涛. 大数据揭示经济发展状况[J]. 电子科技大学学报, 2016, 45(4): 625-633

[5]

5] BLUMENSTOCK J E, GILLICK D, EAGLE N. Who’s calling? Demographics of mobile phone use in Rwanda[J]. Transportation, 2010, 32: 2-5

[6]

6] WESOLOWSKI A, EAGLE N, NOOR A M, et al. Heterogeneous mobile phone ownership and usage patterns in Kenya[J]. PLoS ONE, 2012, 7: e35319

[7]

SUNDSØY P, BJELLAND J, REME B, et al. Deep learning applied to mobile phone data for individual income classification[C]//2016 International Conference on Artificial Intelligence: Technologies and Applications. Paris, France: Atlantis Press, 2016: 96-99.

[8]

GUTIERREZ T, KRINGS G, BLONDEL V D. Evaluating socio-economic state of a country analyzing airtime credit and mobile phone datasets[EB/OL]. (2013-09-17). http://arxiv.org/abs/1309.4496.

[9]

9] FRIAS-MARTINEZ V, VIRSEDA-JEREZ J, FRIAS-MARTINEZ E. On the relation between socio-economic status and physical mobility[J]. Information Technology for Development, 2012, 18: 91-106

[10]

PAPPALARDO L, PEDRESCHI D, SMOREDA Z, et al. Using big data to study the link between human mobility and socio-economic development[C]//2015 IEEE International Conference on Big Data. New York, NY, USA: IEEE Press, 2015: 871-878.

[11]

FLOREZ M, JIANG S, LI R, et al. Measuring the impact of economic well-being in commuting networks–A case study of Bogota, Colombia[C]//Proceedings of the Transportation Research Board 96th Annual Meeting. Washington, DC, USA: Transportation Research Board, 2018: 1-19.

[12]

12] LEO Y, FLEURY E, ALVAREZ-HAMELIN J I, et al. Socioeconomic correlations and stratification in social-communication networks[J]. Journal of The Royal Society Interface, 2016, 13(125): 20160598

[13]

FIXMAN M, BERENSTEIN A, BREA J, et al. A Bayesian approach to income inference in a communication network[C]//2016 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining. New York, NY, USA: IEEE Press, 2016: 579-582.

[14]

14] LUO S, MORONE F, SARRAUTE C, et al. Inferring personal economic status from social network location[J]. Nature Communications, 2017, 8: 15227

[15]

15] WANG Q, GAO J, ZHOU T, et al. Critical size of ego communication networks[J]. EPL (Europhysics Letters), 2016, 114(5): 58004

[16]

JAHANI E, SAINT-JACQUES G, SUNDSØY P, et al. Differential network effects on economic outcomes: A structural perspective[C]//Social Informatics. Cham: Springer International Publishing, 2017: 41-50.

[17]

SMITH-CLARKE C, MASHHADI A, CAPRA L. Poverty on the cheap: Estimating poverty maps using aggregated mobile communication networks[C]//Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. New York, NY, USA: ACM Press, 2014: 511-520.

[18]

18] ŠĆEPANOVIĆ S, MISHKOVSKI I, HUI P, et al. Mobile phone call data as a regional socio-economic proxy indicator[J]. PLoS ONE, 2015, 10: e0124160

[19]

SMITH C, MASHHADI A, CAPRA L. Ubiquitous sensing for mapping poverty in developing countries[C]//Proceedings of the Third Conference on the Analysis of Mobile Phone Datasets, Data for Development Challenge. Cambridge, MA, USA: MIT Media Lab, 2013: 1-7.

[20]

20] MAO H, SHUAI X, AHN Y Y, et al. Quantifying socio-economic indicators in developing countries from mobile phone communication data: applications to Côte d’Ivoire[J]. EPJ Data Science, 2015, 4: 15

[21]

21] EAGLE N, MACY M, CLAXTON R. Network diversity and economic development[J]. Science, 2010, 328(5981): 1029-1031

[22]

22] BLUMENSTOCK J, CADAMURO G, ON R. Predicting poverty and wealth from mobile phone metadata[J]. Science, 2015, 350(6264): 1073-1076

[23]

23] DOBRA A, WILLIAMS N E, EAGLE N. Spatiotemporal detection of unusual human population behavior using mobile phone data[J]. PLoS ONE, 2015, 10(3): e0120449

[24]

24] GUNDOGDU D, INCEL O D, SALAH A A, et al. Countrywide arrhythmia: emergency event detection using mobile phone data[J]. EPJ Data Science, 2016, 5(1): 25

[25]

25] BAGROW J P, WANG D, BARABÁSI A-L. Collective response of human populations to large-scale emergencies[J]. PLoS ONE, 2011, 6(3): e17680

[26]

26] GAO L, SONG C, GAO Z, et al. Quantifying information flow during emergencies[J]. Scientific Reports, 2014, 4: 3997

[27]

27] 周涛, 韩筱璞, 闫小勇, 等. 人类行为时空特性的统计力学[J]. 电子科技大学学报, 2013, 42(4): 481-540

[28]

28] WESOLOWSKI A, EAGLE N, TATEM A J, et al. Quantifying the impact of human mobility on malaria[J]. Science, 2012, 338(6104): 267-270

[29]

29] FINGER F, GENOLET T, MARI L, et al. Mobile phone data highlights the role of mass gatherings in the spreading of cholera outbreaks[J]. Proceedings of the National Academy of Sciences, USA, 2016, 113(23): 6421-6426

[30]

30] BENGTSSON L, LU X, THORSON A, et al. Improved response to disasters and outbreaks by tracking population movements with mobile phone network data: A post-earthquake geospatial study in Haiti[J]. PLoS Medicine, 2011, 8(8): e1001083

[31]

31] LU X, BENGTSSON L, HOLME P. Predictability of population displacement after the 2010 Haiti earthquake[J]. Proceedings of the National Academy of Sciences, USA, 2012, 109(29): 11576-11581

[32]

32] KENETT D Y, PORTUGALI J. Population movement under extreme events[J]. Proceedings of the National Academy of Sciences, USA, 2012, 109(29): 11472-11473

[33]

33] HÄGERSTRAND T. What about people in regional science?[J]. Papers in Regional Science, 1970, 24(1): 7-24

[34]

34] CAO Y, GAO J, LIAN D, et al. Orderliness predicts academic performance: Behavioural analysis on campus lifestyle[J]. Journal of The Royal Society Interface, 2018, 15(146): 20180210

[35]

35] EINAV L, LEVIN J. Economics in the age of big data[J]. Science, 2014, 346(6210): 1243089

[36]

MORALES A, PASTOR D. Studying human behavior through the lens of mobile phones during floods[C]//Proceedings of the Third International Conference on the Analysis of Mobile Data. Cambridge, MA, USA: MIT Media Lab, 2015: 69-71.

[1]

李法运, 刘玮. 社会治理背景下基于云平台社会组织监管机制研究. 电子科技大学学报社科版, 2016, 18(6): 7-11, 38. doi: 10.14071/j.1008-8105(2016)06-0007-05

[2]

洪小良. 创新社会治理需要处理好的几个关系. 电子科技大学学报社科版, 2017, 19(6): 5-8. doi: 10.14071/j.1008-8105(2017)06-0005-04

[3]

管向梅. 社会工作参与社会治理的可能与可为—基于社会工作想象力的启发. 电子科技大学学报社科版, 2018, 20(2): 50-57. doi: 10.14071/j.1008-8105(2017)-1054

[4]

胡燕. “互联网+社会治理”应警惕的三大问题及破解路径. 电子科技大学学报社科版, 2017, 19(6): 9-13. doi: 10.14071/j.1008-8105(2017)06-0009-05

[5]

刘智勇, 周昕芃. 改革开放以来我国社会治理思想研究. 电子科技大学学报社科版, 2018, 20(5): 84-89. doi: 10.14071/j.1008-8105(2018)-1054

[6]

钟雪灵, 侯昉, 彭诗力, 黄承慧. 网络个人信贷大数据风险控制. 电子科技大学学报社科版, 2018, 20(5): 7-11. doi: 10.14071/j.1008-8105(2018)-1113

[7]

薛晓东, 张立佧, 薛飞. 大数据下公共服务的特点及趋势. 电子科技大学学报社科版, 2015, 17(6): 1-31. doi: 10.14071/j.1008-8105(2015)06-0001-04

[8]

李燕, 陈伟, 张淑林. 大数据在高等教育领域应用的探析. 电子科技大学学报社科版, 2018, 20(2): 102-108. doi: 10.14071/j.1008-8105(2017)-0054

[9]

周涛. 大数据与人工智能的伦理挑战(上). 电子科技大学学报社科版, 2018, 20(5): 1-6. doi: 10.14071/j.1008-8105(2018)-1018

[10]

曹银忠, 邹琴. 大数据时代高校思想政治教育的机遇与挑战. 电子科技大学学报社科版, 2015, 17(5): 71-75. doi: 10.14071/j.1008-8105(2015)05-0071-05

[11]

陈颐, 曹海涛. 大数据价值网络下的养老服务产业融合研究. 电子科技大学学报社科版, 2017, 19(6): 28-34. doi: 10.14071/j.1008-8105(2017)06-0028-07

[12]

刘耘, 袁华. 基于大数据的需求驱动的职业能力培养研究. 电子科技大学学报社科版, 2018, 20(2): 8-14. doi: 10.14071/j.1008-8105(2018)-1001

[13]

刘家国, 周锦霞. 基于BI理论的大数据网络营销模型研究. 电子科技大学学报社科版, 2018, 20(3): 1-8. doi: 10.14071/j.1008-8105(2018)-1005

[14]

马续补, 刘玮, 陈颖. 基于知识图谱的国内大数据研究可视化分析. 电子科技大学学报社科版, 2018, 20(3): 9-15. doi: 10.14071/j.1008-8105(2018)-1006

[15]

李平. “电子信息+”与新经济:基于交易成本的分析. 电子科技大学学报社科版, 2018, 20(5): 19-22. doi: 10.14071/j.1008-8105(2018)-1108

[16]

杨军, 李聪. 大数据时代我国政府公共危机管理面临的机遇、挑战及对策. 电子科技大学学报社科版, 2017, 19(2): 5-9. doi: 10.14071/j.1008-8105(2017)02-0005-05

[17]

迟钰雪, 刘怡君. 基于社团发现的舆论大V影响下“多对多”用户交互模式研究. 电子科技大学学报社科版, 2018, 20(3): 16-21. doi: 10.14071/j.1008-8105(2018)-1007

[18]

杨博文. 论人的发展与社会经济发展的统一. 电子科技大学学报社科版, 2004, 6(2): -. doi: 1008 - 8105(2004)02 - 0039 - 04

[19]

衡霞, 代晓旭. 地方财政与地方政府社会治理能力的关系研究—基于四川省1994~2014年的数据分析. 电子科技大学学报社科版, 2017, 19(5): 34-43. doi: 10.14071/j.1008-8105(2017)05-0034-10

[20]

饶旭鹏, 贺娟娟. 绿色发展:创新农村社会治理的战略抉择. 电子科技大学学报社科版, 2017, 19(2): 69-73. doi: 10.14071/j.1008-8105(2017)02-0069-05

计量
  • PDF下载量()
  • 文章访问量()
  • HTML全文浏览量()
  • 引证文献数(0)

目录

探索运营商数据在精准扶贫和应急救灾中的应用

尤伟杰, 高见, 周涛

Figures and Tables