人工智能公众风险感知的类型与演化基于全球视角的分析

Types and Evolution of Public Risk Perception of Artificial Intelligence: A Global Perspective Analysis

  • 摘要: 分析全球公众对人工智能风险的感知类型及其时空演化特征,探讨影响其感知的因素,并为全球可信赖人工智能的发展提供实证基础。通过对社交软件中430万帖子的文本语义分析和时间特征分类,构建全球数据库,量化了不同区域的AI风险类型。研究采用凸包分析、地理信息系统以及集成机器学习等方法,揭示了全球公众风险感知的区域异质性、影响因素及时空演变特征。全球范围内公众对人工智能风险感知呈现显著的区域异质性,受创新技术扩散效应影响形成不同感知类别。而个体特质、政治信任与政府效能,对公众风险感知具有重要塑造作用。在动态维度下感知类别呈现共变逻辑,并呈现由单一向多元格局转变的趋势。

     

    Abstract: This study aims to analyze the global public’s perception of AI risks, examining the types and spatio-temporal evolution of these perceptions. It also seeks to identify the factors influencing these perceptions, providing empirical evidence for the development of trustworthy AI globally. By conducting semantic analysis of 4.3 million posts on social media and categorizing temporal features, a global database is constructed to quantify AI risk types across different regions. The study employs convex hull analysis, geographic information systems (GIS), and integrated machine learning methods to reveal the regional heterogeneity, influencing factors, and spatio-temporal evolution of global public risk perceptions. The findings indicate significant regional heterogeneity in global public perceptions of AI risks, shaped by the diffusion effects of innovative technologies, resulting in diverse perception categories. Individual characteristics, political trust, and government effectiveness significantly shape public risk perceptions. These perception categories exhibit a covariant logic, transitioning from a singular to a pluralistic pattern.

     

/

返回文章
返回