Citation: | FU Chao, XUE Min, ZHAN Qian-shan, DING Xiao-yi, HOU Bing-bing, WU Zi-jian. Research on Reconfigurability of Intelligent Manufacturing Based on HCPS: Development Status, Trend and Prospect[J]. Journal of University of Electronic Science and Technology of China(SOCIAL SCIENCES EDITION), 2021, 23(4): 7-19. DOI: 10.14071/j.1008-8105(2021)-1103 |
周佳军, 姚锡凡. 先进制造技术与新工业革命[J]. 计算机集成制造系统, 2015, 21(8): 1963-1978.
|
严英仕, 杨爱民. 智能制造技术与信息化技术的结合[C]// 2014年中国家用电器技术大会. 宁波: 中国家用电器协会, 2014.
|
朱剑英. 智能制造的意义、技术与实现[J]. 机械制造与自动化, 2013, 42(3): 30-35. doi: 10.3969/j.issn.1671-5276.2013.03.001
|
WRIGHT P K, BOURNE D A. Manufacturing intelligence[M]. Boston: Addison-Wesley Longman Publishing Co., Inc., 1988.
|
周济, 周艳红, 王柏村, 等. 面向新一代智能制造的人–信息–物理系统(HCPS)[J]. Engineering, 2019, 5(4): 71-97.
|
王柏村, 易兵, 刘振宇, 等. HCPS视角下智能制造的发展与研究[J]. 计算机集成制造系统, 20(4): 29-34.
|
SETOYA H. History and review of the IMS (Intelligent Manufacturing System)[C]// 2011 IEEE International Conference on Mechatronics and Automation. Beijing: IEEE, 2011: 30-33.
|
KRUGH M, MEARS L. A complementary cyber-human systems framework for industry 4.0 cyber-physical systems[J]. Manufacturing Letters, 2018, 15: 89-92.
|
SCHIRNER G, ERDOGMUS D, CHOWDHURY K, et al. The future of human-in-the-loop cyber-physical systems[J]. Computer, 2013, 46(1): 36-45. doi: 10.1109/MC.2013.31
|
NUNES D, SILVA J S, BOAVIDA F. A practical introduction to human-in-the-loop cyber-physical systems[M]. Hoboken:Wiley Online Library, 2018.
|
SOWE S K, SIMMON E, ZETTSU K, et al. Cyber-physical-human systems: putting people in the loop[J]. IT Professional, 2016, 18(1): 10-12. doi: 10.1109/MITP.2016.14
|
LEE G H. Reconfigurability consideration design of components and manufacturing systems[J]. The International Journal of Advanced Manufacturing Technology, 1997, 13(5): 376-386. doi: 10.1007/BF01178258
|
祁海铭, 程月华, 姜斌, 等. 功能模块故障下的卫星姿态控制系统硬件可重构性[J]. 航天控制, 2014, 32(4): 62-68. doi: 10.3969/j.issn.1006-3242.2014.04.011
|
ZHOU J, ZHOU Y, WANG B, et al. Human–cyber–physical systems (HCPSs) in the context of new-generation intelligent manufacturing[J]. Engineering, 2019, 5(4): 624-636. doi: 10.1016/j.eng.2019.07.015
|
王柏村, 臧冀原, 屈贤明,等. 基于人–信息–物理系统(HCPS)的新一代智能制造系统[J]. 中国工程科学, 2018, 20(4): 29-34.
|
王柏村, 易兵, 刘振宇, 等. HCPS视角下智能制造的发展与研究[J]. 计算机集成制造系统, 2020(7): 1-19.
|
MA M, LIN W, PAN D, et al. Data and decision intelligence for human-in-the-loop cyber-physical systems: reference model, recent progresses and challenges[J]. Journal of Signal Processing Systems, 2018, 90(8): 1167-1178.
|
EMMANOUILIDIS C, PISTOFIDIS P, BERTONCELJ L, et al. Enabling the human in the loop: linked data and knowledge in industrial cyber-physical systems[J]. Annual Reviews in Control, 2019, 47: 249-265.
|
SUN S, ZHENG X, GONG B, et al. Healthy operator 4.0: a human cyber–physical system architecture for smart workplaces[J]. Sensors, 2020, 20(7): 1-21. doi: 10.3390/s20072011
|
FLORES E, XU X, LU Y. Human cyber-physical systems: a skill-based correlation between humans and machines[C]// 2020 IEEE 16th International Conference on Automation Science and Engineering (CASE). Hong Kong, China: IEEE, 2020: 1313-1318.
|
LIU Z M, WANG J. Human-cyber-physical systems: concepts, challenges, and research opportunities[J]. Frontiers of Information Technology & Electronic Engineering, 2020, 21(11): 1535-1553.
|
WANG B, LI X, FREIHEIT T, et al. Learning and intelligence in human-cyber-physical systems: framework and perspective[C]// 2020 Second International Conference on Transdisciplinary AI (TransAI).Irvine: IEEE, 2020: 142-145.
|
KOREN Y, HEISEL U, JOVANE F, et al. Reconfigurable manufacturing systems[J]. Journal of Manufacturing Systems, 1999, 48(2): 527-540. doi: 10.1016/S0007-8506(07)63232-6
|
梁福军, 宁汝新. 可重构制造系统理论研究[J]. 机械工程学报, 2003(6): 36-43. doi: 10.3321/j.issn:0577-6686.2003.06.009
|
LANDERS R G, MIN B K, KOREN Y. Reconfigurable machine tools[J]. CIRP Annals, 2001, 50(1): 269-274. doi: 10.1016/S0007-8506(07)62120-9
|
蔡宗琰. 计算机辅助可重构制造系统设计的概念研究[D]. 西安: 西北工业大学, 2002.
|
SUGI M, MAEDA Y, AIYAMA Y, et al. A holonic architecture for easy reconfiguration of robotic assembly systems[J]. IEEE Transactions on Robotics and Automation, 2003, 19(3): 457-464. doi: 10.1109/TRA.2003.810241
|
ABDI M R, LABIB A W. A design strategy for reconfigurable manufacturing systems (RMSs) using analytical hierarchical process (AHP): a case study[J]. International Journal of Production Research, 2003, 41(10): 2273-2299. doi: 10.1080/0020754031000077266
|
KATZ R. Design principles of reconfigurable machines[J]. The International Journal of Advanced Manufacturing Technology, 2007, 34(5-6): 430-439. doi: 10.1007/s00170-006-0615-2
|
BORTOLINI M, FERRARI E, GALIZIA F G, et al. An optimisation model for the dynamic management of cellular reconfigurable manufacturing systems under auxiliary module availability constraints[J]. Journal of Manufacturing Systems, 2021, 58: 442-451.
|
管贤平. 基于变邻域遗传算法的RMS布局设计方法[J]. 制造业自动化, 2011, 33(18): 121-124. doi: 10.3969/j.issn.1009-0134.2011.9(x).37
|
段建国, 李爱平, 谢楠, 等. 可重构制造系统生产能力扩展性重构方法[J]. 同济大学学报 (自然科学版), 2012, 40(9): 1357-1363.
|
陈友玲, 刘文科, 严键. 基于RMC的可重构制造系统设备布局优化研究[J]. 计算机应用研究, 2011, 28(12): 4550-4553. doi: 10.3969/j.issn.1001-3695.2011.12.040
|
NAPOLEONE A, POZZETTI A, MACCHI M. A framework to manage reconfigurability in manufacturing[J]. International Journal of Production Research, 2018, 56(11): 3815-3837. doi: 10.1080/00207543.2018.1437286
|
ERSAL T, STEIN J L, LOUCA L S. A modular modeling approach for the design of reconfigurable machine tools[C].Montreal, Quebec, Canada:The ASME International Mechanical Engineering Congress and Exposition, 2004.
|
SPICER P, YIP-HOI D, KOREN Y. Scalable reconfigurable equipment design principles[J]. International Journal of Production Research, 2005, 43(22): 4839-4852. doi: 10.1080/00268970500183042
|
CHEN L, XI F, MACWAN A. Optimal module selection for preliminary design of reconfigurable machine tools[J]. Journal of Manufacturing Science and Engineering, 2005, 127(1): 104-115. doi: 10.1115/1.1826075
|
PATTANAIK L, KUMAR V. Multiple levels of reconfiguration for robust cells formed using modular machines[J]. International Journal of Industrial and Systems Engineering, 2010, 5(4): 424-441. doi: 10.1504/IJISE.2010.032965
|
YIN Y H, XIE J Y, DA XU L, et al. Imaginal thinking-based human-machine design methodology for the configuration of reconfigurable machine tools[J]. IEEE Transactions on Industrial Informatics, 2012, 8(3): 659-668. doi: 10.1109/TII.2012.2188900
|
HE C, GUAN Z, GONG Y, et al. Automated flexible transfer line design problem: Sequential and reconfigurable stages with parallel machining cells[J]. Journal of Manufacturing Systems, 2019, 52: 157-171.
|
高狄, 王擎天, 舒赞辉. 发动机缸体智能清理打磨生产线的设计及应用[J]. 铸造工程, 2021, 45(1): 26-29. doi: 10.3969/j.issn.1673-3320.2021.01.007
|
罗文科, 李光. 道钉整理装箱生产线设计及平衡分析[J]. 包装工程, 2021, 42(5): 199-208.
|
WANG S, LI B, LIU X, et al. The design of intelligent production line for clothing industry[C].Chengdu: The 2020 IEEE 6th International Conference on Computer and Communications (ICCC), 2020: 2403-2408.
|
ZHANG Y. Design of big data platform for automatic production line of handicraft structure[J]. Journal of Physics: Conference Series, 2020, 1575: 012041. doi: 10.1088/1742-6596/1575/1/012041
|
赵联鹏, 唐秋华, 张子凯, 等. 预防维护下装配线平衡的多目标重启变邻域搜索算法[J/OL]. (2021-03-22 ). https://kns.cnki.net/kcms/detail/42.1294.th.20210319.1804.022.html .
|
焦玉玲, 李 琳, 李 津, 等. 一种求解U型装配线平衡的改进启发式算法[J/OL]. (2021-02-22). https://doi.org/10.13229/j.cnki.jdxbgxb20200606.
|
ZOHALI H, NADERI B, ROSHANAEI V. Solving the type-2 assembly line balancing with setups using logic-based benders decomposition[J/OL]. [2021-04-13]. https://www.researchgate.net/publication/350300865_Solving_the_Type2_Assembly_Line_Balancing_with_Setups_Using_Logic-Based_Benders_Decomposition.
|
NIROOMAND S. Hybrid artificial electric field algorithm for assembly line balancing problem with equipment model selection possibility[J]. Knowledge-Based Systems, 2021, 219: 106905. doi: 10.1016/j.knosys.2021.106905
|
LI H, DUAN J, ZHANG Q. Multi-objective integrated scheduling optimization of semi-combined marine crankshaft structure production workshop for green manufacturing[J]. Transactions of the Institute of Measurement and Control, 2021, 43(3): 579-596. doi: 10.1177/0142331220945917
|
李爱平, 傅翔, 刘雪梅. 基于层次聚类的机加工线平衡优化[J]. 机械制造, 2018, 56(2): 81-86. doi: 10.3969/j.issn.1000-4998.2018.02.024
|
邵焕, 李爱平, 于海斌, 等. 基于多色集合理论的箱体类零件可重构生产线多目标优化算法[J]. 计算机集成制造系统, 2015, 21(9): 2393-2402.
|
DELORME X, MALYUTIN S, DOLGUI A. A multi-objective approach for design of reconfigurable transfer lines[J]. IFAC-PapersOnLine, 2016, 49(12): 509-514. doi: 10.1016/j.ifacol.2016.07.675
|
LAHRICHI Y, GRANGEON N, DEROUSSI L, et al. A new split-based hybrid metaheuristic for the reconfigurable transfer line balancing problem[J]. International Journal of Production Research, 2021, 59(4): 1127-1144. doi: 10.1080/00207543.2020.1720929
|
LIU X, CHEN J, LI A. Optimisation of line configuration and balancing for reconfigurable transfer lines considering demand uncertainty[J]. International Journal of Production Research, 2021, 59(2): 444-466. doi: 10.1080/00207543.2019.1696490
|
贾舒媛, 李高升, 董学文, 等. 手机装配单一品种流水线的平衡改善[J]. 制造业自动化, 2020, 42(5): 104-106+152. doi: 10.3969/j.issn.1009-0134.2020.05.023
|
徐立云, 徐昌飞, 邓 伟, 等. 基于SA-PSO算法的发动机缸体机加工线平衡研究[J]. 农业机械学报, 2014, 45(2): 16-21.
|
万晓琴, 严洪森. 面向航空发动机的知识化制造系统拖期调度与自重构[J]. 控制与决策, 2017, 32(3): 526-534.
|
孙连胜, 宁汝新, 张志英. FMS规划方案的综合评估方法研究[J]. 机械工程学报, 2003(2): 47-52. doi: 10.3321/j.issn:0577-6686.2003.02.010
|
牛国成, 胡 贞, 胡冬梅. 基于物元信息熵的生产线健康度评估及预测[J]. 计算机集成制造系统, 2019, 25(7): 1639-1646.
|
LI C J, XIE Z S, PENG X R, et al. Performance evaluation and improvement of chipset assembly & test production line based on variability[J]. International Journal of Automation and Computing, 2019, 16(2): 186-198. doi: 10.1007/s11633-018-1129-8
|
姜霞, 战景明, 刘占旗. 核工业某生产线工作场所汞污染治理效果评估[J]. 中国卫生工程学, 2020, 19(6): 820-822.
|
薛向明, 潘泽君, 武 钊, 等. AP1000核燃料元件生产线辐射风险评估探讨[J]. 中国工业医学杂志, 2020, 33(5): 450-453.
|
王泓晖, 刘日良, 张承瑞. 基于加工特征的车间可重构式自动编程系统设计与实现[J]. 计算机集成制造系统, 2016, 22(10): 2396-2407.
|
王琦峰, 刘 飞, 黄海龙. 面向服务的离散车间可重构制造执行系统研究[J]. 计算机集成制造系统, 2008(4): 737-743.
|
王骏, 饶成明, 陈高俊, 等. 基于可重构MES的智能车间工作流管理方法研究[J]. 制造业自动化, 2014, 36(12): 12-16.
|
SHOHAM Y. Agent-oriented programming[J]. Artificial Intelligence, 1993, 60(1): 51-92. doi: 10.1016/0004-3702(93)90034-9
|
LINKENS D A, YANG Y Y. Scheduling and optimisation for heating of steel soaking pits: case study for hybrid systems[J]. IEEE Proceedings—Science, Measurement and Technology, 1995, 142(5): 362-370. doi: 10.1049/ip-smt:19952056
|
SHERALI H D, FRATICELLI B M P, MELLER R D. Enhanced model formulations for optimal facility layout[J]. Operations Research, 2003, 51(4): 629-644. doi: 10.1287/opre.51.4.629.16096
|
ERTAY T, RUAN D, TUZKAYA U R. Integrating data envelopment analysis and analytic hierarchy for the facility layout design in manufacturing systems[J]. Information Sciences, 2006, 176(3): 237-262. doi: 10.1016/j.ins.2004.12.001
|
AZADEH A, NAZARI T, CHARKHAND H. Optimisation of facility layout design problem with safety and environmental factors by stochastic DEA and simulation approach[J]. International Journal of Production Research, 2015, 53(11): 3370-3389. doi: 10.1080/00207543.2014.986294
|
FARIBORZ J, REZA T, MOHAMMAD T. A multi-objective particle swarm optimisation algorithm for unequal sized dynamic facility layout problem with pickup/drop-off locations[J]. International Journal of Production Research, 2012, 50(15): 4279-4293. doi: 10.1080/00207543.2011.613863
|
孙凯, 刘祥. 基于蚁群–遗传混合算法的设备布局优化方法[J]. 系统工程理论与实践, 2019, 39(10): 2581-2589. doi: 10.12011/1000-6788-2018-0754-09
|
葛华辉, 冯毅雄, 密尚华, 等. 集成自动导引车路径规划的智能制造数字化车间设备布局优化方法[J]. 计算机集成制造系统, 2019, 25(7): 1655-1664.
|
刘琼, 赵海飞. 基于多目标果蝇算法面向低碳的车间布局与调度集成优化[J]. 机械工程学报, 2017, 53(11): 122-133.
|
黄淇, 周其洪, 张倩, 等. 基于系统布置设计–遗传算法的纱线浸染生产线布局优化[J]. 纺织学报, 2020, 41(3): 84-90.
|
李亚杰, 何卫平, 陈金亮, 等. 可重构流程模型驱动和组件化的MES流程进化[J]. 计算机集成制造系统, 2013, 19(4): 735-744.
|
戴毅茹, 王 坚. 多耦合混杂流程工业过程可重构建模方法[J]. 计算机集成制造系统, 2011, 17(11): 2457-2466.
|
徐立云, 郭昆吾, 刘 伟, 等. 基于可重构制造系统生产能力扩展过程的工艺重构[J]. 计算机集成制造系统, 2015, 21(6): 1460-1468.
|
王成恩. 企业组织与过程的优化重构[J]. 信息与控制, 2001(S1): 581-585.
|
杨鹏飞, 刘 波, 党佳乐, 等. 面向条件受限环境的动态可重构异构计算平台[J]. 空间控制技术与应用, 2020, 46(3): 11-17. doi: 10.3969/j.issn.1674-1579.2020.03.002
|
WAN J, TANG S, LI D, et al. Reconfigurable smart factory for drug packing in healthcare industry 4.0[J]. IEEE Transactions on Industrial Informatics, 2019, 15(1): 507-516. doi: 10.1109/TII.2018.2843811
|
JACKSON K, EFTHYMIOU K, BORTON J. Digital manufacturing and flexible assembly technologies for reconfigurable aerospace production systems[J]. Procedia CIRP, 2016, 52: 274-279.
|
张映锋, 张党, 任杉. 智能制造及其关键技术研究现状与趋势综述[J]. 机械科学与技术, 2019, 38(3): 329-338.
|