• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
FU Chao, XUE Min, ZHAN Qian-shan, DING Xiao-yi, HOU Bing-bing, WU Zi-jian. Research on Reconfigurability of Intelligent Manufacturing Based on HCPS: Development Status, Trend and Prospect[J]. Journal of University of Electronic Science and Technology of China(SOCIAL SCIENCES EDITION), 2021, 23(4): 7-19. DOI: 10.14071/j.1008-8105(2021)-1103
Citation: FU Chao, XUE Min, ZHAN Qian-shan, DING Xiao-yi, HOU Bing-bing, WU Zi-jian. Research on Reconfigurability of Intelligent Manufacturing Based on HCPS: Development Status, Trend and Prospect[J]. Journal of University of Electronic Science and Technology of China(SOCIAL SCIENCES EDITION), 2021, 23(4): 7-19. DOI: 10.14071/j.1008-8105(2021)-1103

Research on Reconfigurability of Intelligent Manufacturing Based on HCPS: Development Status, Trend and Prospect

More Information
  • Received Date: May 17, 2021
  • Available Online: May 23, 2021
  • [Purpose/Significance] The researches of intelligent manufacturing methods based on Human-Cyber-Physical System (HCPS) are important basic theories to promote the development and transformation of the advanced manufacturing industry with intelligent manufacturing as the core. Therefore, it is of great theoretical significance to carry out a retrospective literature review and analysis on the reconfigurability of intelligent manufacturing based on HCPS for enriching the intelligent manufacturing method system based on HCPS. [Designs/Methodology] Based on the relevant basic theories and systematic analysis of the research status, this paper clearly points out the development trend and research prospect of HCPS-based intelligent manufacturing reconfigurability.[Conclusions/Findings] Currently, there are abundant research results of the reconfigurability of machine tools, production lines, and intelligent workshops. However, the researches on the reconfigurability of intelligent factory are still in the initial stage. Based on the above findings, this paper deeply analyzes and proposes the prospect of reconfigurable method system of intelligent manufacturing, the reconfigurability of intelligent factory based on HCPS, and reconfigurability of intelligent manufacturing for the industrial internet, and promotes theoretical researches on the reconfigurability of intelligent manufacturing and its applications in future intelligent factories.
  • 周佳军, 姚锡凡. 先进制造技术与新工业革命[J]. 计算机集成制造系统, 2015, 21(8): 1963-1978.
    严英仕, 杨爱民. 智能制造技术与信息化技术的结合[C]// 2014年中国家用电器技术大会. 宁波: 中国家用电器协会, 2014.
    朱剑英. 智能制造的意义、技术与实现[J]. 机械制造与自动化, 2013, 42(3): 30-35. doi: 10.3969/j.issn.1671-5276.2013.03.001
    WRIGHT P K, BOURNE D A. Manufacturing intelligence[M]. Boston: Addison-Wesley Longman Publishing Co., Inc., 1988.
    周济, 周艳红, 王柏村, 等. 面向新一代智能制造的人–信息–物理系统(HCPS)[J]. Engineering, 2019, 5(4): 71-97.
    王柏村, 易兵, 刘振宇, 等. HCPS视角下智能制造的发展与研究[J]. 计算机集成制造系统, 20(4): 29-34.
    SETOYA H. History and review of the IMS (Intelligent Manufacturing System)[C]// 2011 IEEE International Conference on Mechatronics and Automation. Beijing: IEEE, 2011: 30-33.
    KRUGH M, MEARS L. A complementary cyber-human systems framework for industry 4.0 cyber-physical systems[J]. Manufacturing Letters, 2018, 15: 89-92.
    SCHIRNER G, ERDOGMUS D, CHOWDHURY K, et al. The future of human-in-the-loop cyber-physical systems[J]. Computer, 2013, 46(1): 36-45. doi: 10.1109/MC.2013.31
    NUNES D, SILVA J S, BOAVIDA F. A practical introduction to human-in-the-loop cyber-physical systems[M]. Hoboken:Wiley Online Library, 2018.
    SOWE S K, SIMMON E, ZETTSU K, et al. Cyber-physical-human systems: putting people in the loop[J]. IT Professional, 2016, 18(1): 10-12. doi: 10.1109/MITP.2016.14
    LEE G H. Reconfigurability consideration design of components and manufacturing systems[J]. The International Journal of Advanced Manufacturing Technology, 1997, 13(5): 376-386. doi: 10.1007/BF01178258
    祁海铭, 程月华, 姜斌, 等. 功能模块故障下的卫星姿态控制系统硬件可重构性[J]. 航天控制, 2014, 32(4): 62-68. doi: 10.3969/j.issn.1006-3242.2014.04.011
    ZHOU J, ZHOU Y, WANG B, et al. Human–cyber–physical systems (HCPSs) in the context of new-generation intelligent manufacturing[J]. Engineering, 2019, 5(4): 624-636. doi: 10.1016/j.eng.2019.07.015
    王柏村, 臧冀原, 屈贤明,等. 基于人–信息–物理系统(HCPS)的新一代智能制造系统[J]. 中国工程科学, 2018, 20(4): 29-34.
    王柏村, 易兵, 刘振宇, 等. HCPS视角下智能制造的发展与研究[J]. 计算机集成制造系统, 2020(7): 1-19.
    MA M, LIN W, PAN D, et al. Data and decision intelligence for human-in-the-loop cyber-physical systems: reference model, recent progresses and challenges[J]. Journal of Signal Processing Systems, 2018, 90(8): 1167-1178.
    EMMANOUILIDIS C, PISTOFIDIS P, BERTONCELJ L, et al. Enabling the human in the loop: linked data and knowledge in industrial cyber-physical systems[J]. Annual Reviews in Control, 2019, 47: 249-265.
    SUN S, ZHENG X, GONG B, et al. Healthy operator 4.0: a human cyber–physical system architecture for smart workplaces[J]. Sensors, 2020, 20(7): 1-21. doi: 10.3390/s20072011
    FLORES E, XU X, LU Y. Human cyber-physical systems: a skill-based correlation between humans and machines[C]// 2020 IEEE 16th International Conference on Automation Science and Engineering (CASE). Hong Kong, China: IEEE, 2020: 1313-1318.
    LIU Z M, WANG J. Human-cyber-physical systems: concepts, challenges, and research opportunities[J]. Frontiers of Information Technology & Electronic Engineering, 2020, 21(11): 1535-1553.
    WANG B, LI X, FREIHEIT T, et al. Learning and intelligence in human-cyber-physical systems: framework and perspective[C]// 2020 Second International Conference on Transdisciplinary AI (TransAI).Irvine: IEEE, 2020: 142-145.
    KOREN Y, HEISEL U, JOVANE F, et al. Reconfigurable manufacturing systems[J]. Journal of Manufacturing Systems, 1999, 48(2): 527-540. doi: 10.1016/S0007-8506(07)63232-6
    梁福军, 宁汝新. 可重构制造系统理论研究[J]. 机械工程学报, 2003(6): 36-43. doi: 10.3321/j.issn:0577-6686.2003.06.009
    LANDERS R G, MIN B K, KOREN Y. Reconfigurable machine tools[J]. CIRP Annals, 2001, 50(1): 269-274. doi: 10.1016/S0007-8506(07)62120-9
    蔡宗琰. 计算机辅助可重构制造系统设计的概念研究[D]. 西安: 西北工业大学, 2002.
    SUGI M, MAEDA Y, AIYAMA Y, et al. A holonic architecture for easy reconfiguration of robotic assembly systems[J]. IEEE Transactions on Robotics and Automation, 2003, 19(3): 457-464. doi: 10.1109/TRA.2003.810241
    ABDI M R, LABIB A W. A design strategy for reconfigurable manufacturing systems (RMSs) using analytical hierarchical process (AHP): a case study[J]. International Journal of Production Research, 2003, 41(10): 2273-2299. doi: 10.1080/0020754031000077266
    KATZ R. Design principles of reconfigurable machines[J]. The International Journal of Advanced Manufacturing Technology, 2007, 34(5-6): 430-439. doi: 10.1007/s00170-006-0615-2
    BORTOLINI M, FERRARI E, GALIZIA F G, et al. An optimisation model for the dynamic management of cellular reconfigurable manufacturing systems under auxiliary module availability constraints[J]. Journal of Manufacturing Systems, 2021, 58: 442-451.
    管贤平. 基于变邻域遗传算法的RMS布局设计方法[J]. 制造业自动化, 2011, 33(18): 121-124. doi: 10.3969/j.issn.1009-0134.2011.9(x).37
    段建国, 李爱平, 谢楠, 等. 可重构制造系统生产能力扩展性重构方法[J]. 同济大学学报 (自然科学版), 2012, 40(9): 1357-1363.
    陈友玲, 刘文科, 严键. 基于RMC的可重构制造系统设备布局优化研究[J]. 计算机应用研究, 2011, 28(12): 4550-4553. doi: 10.3969/j.issn.1001-3695.2011.12.040
    NAPOLEONE A, POZZETTI A, MACCHI M. A framework to manage reconfigurability in manufacturing[J]. International Journal of Production Research, 2018, 56(11): 3815-3837. doi: 10.1080/00207543.2018.1437286
    ERSAL T, STEIN J L, LOUCA L S. A modular modeling approach for the design of reconfigurable machine tools[C].Montreal, Quebec, Canada:The ASME International Mechanical Engineering Congress and Exposition, 2004.
    SPICER P, YIP-HOI D, KOREN Y. Scalable reconfigurable equipment design principles[J]. International Journal of Production Research, 2005, 43(22): 4839-4852. doi: 10.1080/00268970500183042
    CHEN L, XI F, MACWAN A. Optimal module selection for preliminary design of reconfigurable machine tools[J]. Journal of Manufacturing Science and Engineering, 2005, 127(1): 104-115. doi: 10.1115/1.1826075
    PATTANAIK L, KUMAR V. Multiple levels of reconfiguration for robust cells formed using modular machines[J]. International Journal of Industrial and Systems Engineering, 2010, 5(4): 424-441. doi: 10.1504/IJISE.2010.032965
    YIN Y H, XIE J Y, DA XU L, et al. Imaginal thinking-based human-machine design methodology for the configuration of reconfigurable machine tools[J]. IEEE Transactions on Industrial Informatics, 2012, 8(3): 659-668. doi: 10.1109/TII.2012.2188900
    HE C, GUAN Z, GONG Y, et al. Automated flexible transfer line design problem: Sequential and reconfigurable stages with parallel machining cells[J]. Journal of Manufacturing Systems, 2019, 52: 157-171.
    高狄, 王擎天, 舒赞辉. 发动机缸体智能清理打磨生产线的设计及应用[J]. 铸造工程, 2021, 45(1): 26-29. doi: 10.3969/j.issn.1673-3320.2021.01.007
    罗文科, 李光. 道钉整理装箱生产线设计及平衡分析[J]. 包装工程, 2021, 42(5): 199-208.
    WANG S, LI B, LIU X, et al. The design of intelligent production line for clothing industry[C].Chengdu: The 2020 IEEE 6th International Conference on Computer and Communications (ICCC), 2020: 2403-2408.
    ZHANG Y. Design of big data platform for automatic production line of handicraft structure[J]. Journal of Physics: Conference Series, 2020, 1575: 012041. doi: 10.1088/1742-6596/1575/1/012041
    赵联鹏, 唐秋华, 张子凯, 等. 预防维护下装配线平衡的多目标重启变邻域搜索算法[J/OL]. (2021-03-22 ). https://kns.cnki.net/kcms/detail/42.1294.th.20210319.1804.022.html .
    焦玉玲, 李 琳, 李 津, 等. 一种求解U型装配线平衡的改进启发式算法[J/OL]. (2021-02-22). https://doi.org/10.13229/j.cnki.jdxbgxb20200606.
    ZOHALI H, NADERI B, ROSHANAEI V. Solving the type-2 assembly line balancing with setups using logic-based benders decomposition[J/OL]. [2021-04-13]. https://www.researchgate.net/publication/350300865_Solving_the_Type2_Assembly_Line_Balancing_with_Setups_Using_Logic-Based_Benders_Decomposition.
    NIROOMAND S. Hybrid artificial electric field algorithm for assembly line balancing problem with equipment model selection possibility[J]. Knowledge-Based Systems, 2021, 219: 106905. doi: 10.1016/j.knosys.2021.106905
    LI H, DUAN J, ZHANG Q. Multi-objective integrated scheduling optimization of semi-combined marine crankshaft structure production workshop for green manufacturing[J]. Transactions of the Institute of Measurement and Control, 2021, 43(3): 579-596. doi: 10.1177/0142331220945917
    李爱平, 傅翔, 刘雪梅. 基于层次聚类的机加工线平衡优化[J]. 机械制造, 2018, 56(2): 81-86. doi: 10.3969/j.issn.1000-4998.2018.02.024
    邵焕, 李爱平, 于海斌, 等. 基于多色集合理论的箱体类零件可重构生产线多目标优化算法[J]. 计算机集成制造系统, 2015, 21(9): 2393-2402.
    DELORME X, MALYUTIN S, DOLGUI A. A multi-objective approach for design of reconfigurable transfer lines[J]. IFAC-PapersOnLine, 2016, 49(12): 509-514. doi: 10.1016/j.ifacol.2016.07.675
    LAHRICHI Y, GRANGEON N, DEROUSSI L, et al. A new split-based hybrid metaheuristic for the reconfigurable transfer line balancing problem[J]. International Journal of Production Research, 2021, 59(4): 1127-1144. doi: 10.1080/00207543.2020.1720929
    LIU X, CHEN J, LI A. Optimisation of line configuration and balancing for reconfigurable transfer lines considering demand uncertainty[J]. International Journal of Production Research, 2021, 59(2): 444-466. doi: 10.1080/00207543.2019.1696490
    贾舒媛, 李高升, 董学文, 等. 手机装配单一品种流水线的平衡改善[J]. 制造业自动化, 2020, 42(5): 104-106+152. doi: 10.3969/j.issn.1009-0134.2020.05.023
    徐立云, 徐昌飞, 邓 伟, 等. 基于SA-PSO算法的发动机缸体机加工线平衡研究[J]. 农业机械学报, 2014, 45(2): 16-21.
    万晓琴, 严洪森. 面向航空发动机的知识化制造系统拖期调度与自重构[J]. 控制与决策, 2017, 32(3): 526-534.
    孙连胜, 宁汝新, 张志英. FMS规划方案的综合评估方法研究[J]. 机械工程学报, 2003(2): 47-52. doi: 10.3321/j.issn:0577-6686.2003.02.010
    牛国成, 胡 贞, 胡冬梅. 基于物元信息熵的生产线健康度评估及预测[J]. 计算机集成制造系统, 2019, 25(7): 1639-1646.
    LI C J, XIE Z S, PENG X R, et al. Performance evaluation and improvement of chipset assembly & test production line based on variability[J]. International Journal of Automation and Computing, 2019, 16(2): 186-198. doi: 10.1007/s11633-018-1129-8
    姜霞, 战景明, 刘占旗. 核工业某生产线工作场所汞污染治理效果评估[J]. 中国卫生工程学, 2020, 19(6): 820-822.
    薛向明, 潘泽君, 武 钊, 等. AP1000核燃料元件生产线辐射风险评估探讨[J]. 中国工业医学杂志, 2020, 33(5): 450-453.
    王泓晖, 刘日良, 张承瑞. 基于加工特征的车间可重构式自动编程系统设计与实现[J]. 计算机集成制造系统, 2016, 22(10): 2396-2407.
    王琦峰, 刘 飞, 黄海龙. 面向服务的离散车间可重构制造执行系统研究[J]. 计算机集成制造系统, 2008(4): 737-743.
    王骏, 饶成明, 陈高俊, 等. 基于可重构MES的智能车间工作流管理方法研究[J]. 制造业自动化, 2014, 36(12): 12-16.
    SHOHAM Y. Agent-oriented programming[J]. Artificial Intelligence, 1993, 60(1): 51-92. doi: 10.1016/0004-3702(93)90034-9
    LINKENS D A, YANG Y Y. Scheduling and optimisation for heating of steel soaking pits: case study for hybrid systems[J]. IEEE Proceedings—Science, Measurement and Technology, 1995, 142(5): 362-370. doi: 10.1049/ip-smt:19952056
    SHERALI H D, FRATICELLI B M P, MELLER R D. Enhanced model formulations for optimal facility layout[J]. Operations Research, 2003, 51(4): 629-644. doi: 10.1287/opre.51.4.629.16096
    ERTAY T, RUAN D, TUZKAYA U R. Integrating data envelopment analysis and analytic hierarchy for the facility layout design in manufacturing systems[J]. Information Sciences, 2006, 176(3): 237-262. doi: 10.1016/j.ins.2004.12.001
    AZADEH A, NAZARI T, CHARKHAND H. Optimisation of facility layout design problem with safety and environmental factors by stochastic DEA and simulation approach[J]. International Journal of Production Research, 2015, 53(11): 3370-3389. doi: 10.1080/00207543.2014.986294
    FARIBORZ J, REZA T, MOHAMMAD T. A multi-objective particle swarm optimisation algorithm for unequal sized dynamic facility layout problem with pickup/drop-off locations[J]. International Journal of Production Research, 2012, 50(15): 4279-4293. doi: 10.1080/00207543.2011.613863
    孙凯, 刘祥. 基于蚁群–遗传混合算法的设备布局优化方法[J]. 系统工程理论与实践, 2019, 39(10): 2581-2589. doi: 10.12011/1000-6788-2018-0754-09
    葛华辉, 冯毅雄, 密尚华, 等. 集成自动导引车路径规划的智能制造数字化车间设备布局优化方法[J]. 计算机集成制造系统, 2019, 25(7): 1655-1664.
    刘琼, 赵海飞. 基于多目标果蝇算法面向低碳的车间布局与调度集成优化[J]. 机械工程学报, 2017, 53(11): 122-133.
    黄淇, 周其洪, 张倩, 等. 基于系统布置设计–遗传算法的纱线浸染生产线布局优化[J]. 纺织学报, 2020, 41(3): 84-90.
    李亚杰, 何卫平, 陈金亮, 等. 可重构流程模型驱动和组件化的MES流程进化[J]. 计算机集成制造系统, 2013, 19(4): 735-744.
    戴毅茹, 王 坚. 多耦合混杂流程工业过程可重构建模方法[J]. 计算机集成制造系统, 2011, 17(11): 2457-2466.
    徐立云, 郭昆吾, 刘 伟, 等. 基于可重构制造系统生产能力扩展过程的工艺重构[J]. 计算机集成制造系统, 2015, 21(6): 1460-1468.
    王成恩. 企业组织与过程的优化重构[J]. 信息与控制, 2001(S1): 581-585.
    杨鹏飞, 刘 波, 党佳乐, 等. 面向条件受限环境的动态可重构异构计算平台[J]. 空间控制技术与应用, 2020, 46(3): 11-17. doi: 10.3969/j.issn.1674-1579.2020.03.002
    WAN J, TANG S, LI D, et al. Reconfigurable smart factory for drug packing in healthcare industry 4.0[J]. IEEE Transactions on Industrial Informatics, 2019, 15(1): 507-516. doi: 10.1109/TII.2018.2843811
    JACKSON K, EFTHYMIOU K, BORTON J. Digital manufacturing and flexible assembly technologies for reconfigurable aerospace production systems[J]. Procedia CIRP, 2016, 52: 274-279.
    张映锋, 张党, 任杉. 智能制造及其关键技术研究现状与趋势综述[J]. 机械科学与技术, 2019, 38(3): 329-338.

Catalog

    Article views (1396) PDF downloads (54) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return